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Immiscible displacement of viscosity-matched fluids in two-dimensional porous media
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The effect of stabilization has been investigated experimentally when a nonwetting fluid is displacing a
wetting fluid with the same viscosity in a two-dimensional porous medium. Experiments were done at different
injection rates, with capillary numbers ranging from~10to 10 4. The features of the front between the
liquids were analyzed and found similar to those observed from invasion percolation models including a spatial
gradient in the average pore threshold value, and gravitationally stabilized experiments. Front and structure of
the trapped clusters of the invaded fluid at different capillary numbers are self-similar with the fractal dimen-
sionsD,=1.33 andDy'=1.85, respectively. The dependence of the front widthon the capillaryC, was
found to be consistent with a power lamg~C, “, with =0.6. The dynamic exponeity~ 0.8 describing
front width evolution as a function of time was determined by collapsing the density-density correlation
function data. An analytical argument is presented to support the stabilization of the front owing to the viscous
effects.[S1063-651X96)05012-X]

PACS numbg(s): 47.55.Mh, 05.40tj, 47.55.Kf

[. INTRODUCTION viscosity. The front is found to stabilizge., flatten at large
displacement rates. We emphasize that the velocity field in
The structure and dynamics of two-phase flow in porousour experiments is not homogeneous. The mechanism that
media have been the object of a large number of studies iatabilizes the front is different from that of experiments with
recent years. One of the main reasons for this is the ricla gravitational field which is homogeneous. In the latter case,
variety of structures which can be created depending on thihe front propagation may be mapped onto an invasion per-
relative viscosity, interface tension, wettability, and displace-colation process with a gradient in the average pore threshold
ment ratg 1—6]. Two-phase flow in a porous medium is also value [10,21,23 and the competition between the gravita-
of large practical importance in secondary oil recovery. Intional and capillary forces is described by the bond number,
this paper we restrict the discussion to drainage in twoBo=ga’dp/y, whereg is the gravitational constang is a
dimensional systems, i.e., the process where a nonwettirypical pore sizeyy is the interface tension, angp the den-
fluid displaces a wetting fluid in a porous medium. In thesity difference between the liquids. The bond number gives
limit of very slow injection rates, the displacement processthe strength of the external field which corresponds to the
depends entirely on the capillary pressure threshold fluctuggradient used in the invasion percolation simulation. Recent
tions at the pore levdl7—9]. In this limit, the pressure drop €xperiments and simulations show an excellent agreement
due to the viscous flow field can be neglected. However, thaith this mapping first suggested by Wilkins¢al]. How-
presence of a gravity field may either stabil[4®] or desta-  €ver, this analysis is not suited for the case we study here,
bilize the front[11,12. At slow injection rates, it is observed Where the pressure gradient is dominated by viscous flow.
experimentally that the front movement is not continuous,The trapped clusters and the pore size fluctuations give rise
but occurs in sudden bursts, called Haines jurfik®. Re-  in this case to significant pressure fluctuations that cannot be
cent theoretical studiefl4—1§ and experiment§16,18  neglected.
have revealed general scaling features of the burst dynamics Wilkinson also went further with a theoretical approach to
in slow drainage. In the limit of high injection rates, the the viscous problem in three dimensiofl,22. By using
structures observed depend critically on the viscosity ratio othe Darcy law, the concept of relative permeability, and a
the fluids[3]. When the injected fluid has a lower viscosity percolation approach for the saturation of the nonwetting
than the displaced fluid, the situation is highly unstable andluid, he proposed the scaling relation~C; */{* 1A+
ramified viscous fingers are obserydd2,19,2Q. In the op-  for the width of the front. Herev is the correlatlon length
posite case when the injected liquid has a higher viscosityexponent,B is the order parameter exponent, and the
the situation is stabl¢3], and the front reaches a steady conductivity exponent in percolation. The capillary number
width. is the ratio between the viscous and the capillary forces and
We report on the experimental study of drainage in a twods defined asC,= uv/y, whereu is the dynamic viscosity,
dimensional porous model with liquids which have the same is the superficial velocity, i.e., volume flux, andis the
interface tension. However, we emphasize that this theory is
not necessarily valid in two dimensions, because of the im-
*Permanent address: Laboratorie déoldgie, Ecole Normale portance of trapping of the displaced fluid. In three dimen-
Supeieure, 24 rue Lhomond, F-75 231 Paris Cedex 05, France. sions, trapping may be neglected. By using the Darcy law,
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FIG. 1. The experimental setufa) Plexiglas beadsib) preci-
sion pump with constant flow ratéc) inlet, (d) outlet, (e) ther-
mistors, (f) mylar membrane and pressure pillow filled with water,
(g) light case,(h) Hetro regulator,(i) pump, (j) water pressure
source.

this theory is also a mean field approach, neglecting fluctua
tions in the velocity field. To our knowledge, no experiments

have been performed that test this scaling relation in three
P g ne silicone oil. The displacing fluid is a 2006y weighd

dimensions. In the theory of Wilkinson, it is assumed that th

viscosity of the injected fluid is higher than that of the dis-
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contact papers. To squeeze the beads and the contact paper
together with the upper plate, a mylar membrane, below the

model, is kept under a 2.5 m water pressure provided by an
external reservoir connected to the model. To prevent gravi-

tational effects, the upper glass plate is carefully leveled to

within 0.1 mm.

Since the viscosity of the liquids is sensitive to tempera-
ture variations, it is important to control the temperature in-
side the model. This is done by circulating water in the mylar
pillow through a controlled temperature bath. The tempera-
ture is measured inside the model by two thermistors
mounted close to the inlet and the outlet of the porous model.
With this temperature regulator, the temperature difference
between the two sides of the model is kept within 0.1 K for
all experiments. The temperature drift during time was less
than 0.1 K for the fast experimentshorter than 5 hand
about 0.3 K for the slowest experimefit50 h. It is impor-
tant to note that the temperature drift for slow experiments is
not important since the viscous pressure gradients are negli-
gible compared to the capillary ones.

The model was initially filled with a hexamethyldisilox-

water glycerol solution with 0.2% nigrosine dye. The tem-

placed fluid. This is not the case in the experiments we repoR€rature dependence of the viscosity of each fluid has been

on here, where the viscosities of the two liquids are equal.

measured and used to estimate the temperature at which vis-

However, as will be argued in the following, trapping and cosity matching is achieved. These measurements were per-

flow in local capillary fingers induce a decrease in effective
permeability of the invaded regions, which may be inter-
preted as an increase of effective viscosity of the invadin

fluid. Thus, this condition for the Wilkinson theory to apply
is fulfilled.

We performed experiments in two-dimensional porous

formed with the same thermistors as the ones used in the
model. This suppresses zero point shift of the temperature.
The temperature of equal dynamic viscosigy=47.8 cB is
4.5 °C.
The interface tension between both liquids is measured by
using a pendant drop methd@3] giving y=28 dyn/cm.

media at different displacement rates. The dependence of ttig<P€riments were performed to check the wetting properties

saturated front widthwg on the capillary numbeC, was
measured and found consistent with a power lay-C_ *
with «=0.6. The front itself is found to be fractal with a
fractal dimension equal t®,=1.33, consistent with the

fractal dimension of the external perimeter in invasion per-
colation and results obtained from gravitational stabilized?
fluid fronts. The distribution function of the trapped clusters,
generated by the front, was also found to be consistent witl
invasion percolation results. The dynamics of the front wa:

investigated by measuring the dynamic exponggt de-
scribing the time dependence of the front width.

The paper is structured as follows: in Sec. Il, we describ
the experiments, in Sec. Il we present the experimental re-

sults, and in Sec. IV we discuss and compare the results
those of other studies.

Il. EXPERIMENTS

The experimental setup is shown in Fig. 1. The porou

S

of the fluids by using droplets of the water-glycerol mixture
immersed in the silicon oil on a substrate of Plexiglas and
contact paper. We found that silicon oil wets both Plexiglas
and contact paper with an almost equal wetting angle:
a~50° (i.e., the angle between the substrate and the water-
lycerol droplel.

The displacement process is visualized by illuminating
Hwe model from below and pictures are taken from above
with a Kodak DCS 420 CCD camera. The images have a
resolution of 153& 1024 pixels and are analyzed by using
an image processing software specifically developed for this
urpose. An example of a high resolution photograph of a
ully developed drainage front at a capillary number
2=4.40< 10" " is shown in Fig. 2. The spatial resolution is
.2 mm per pixel. The nonwetting fluid is shown as black
and moves downwards in the image. A complicated fractal
front is observed with trapped clusters behind the front. The
grey level distribution of the image presents two peaks which

Lorrespond, respectively, to the white and the dark parts of

model consists of a monolayer of Plexiglas beads of diametdf'® Image. The image is clipped with a threshold set at the
d=0.7 mm, randomly spread between two contact papergunlmum between the peaks. Cluster size distributions are

[1]. The model is transparent and has a porogity0.7. A

rectangular silicon rubber packing provides boundary of th

model of size 350 mnmx 350 mm.

A 2 cm thick glass plate is placed on the top and clamped

together wih a 2 cmPlexiglas plate lying underneath the

calculated from the clipped image. The drainage front is ex-

éracted as the boundary of the largest cluster of the image.

Figure Zb) shows the front between fluids of Fig(a2

Ill. EXPERIMENTAL RESULTS

model. Both rigid plates prevent bending of the model. In the Experiments at different injection rates were performed to
middle, the layer of Plexiglas beads is glued between thatudy the dependence of the front geometry on the capillary
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from the average position of the front. The distribution
n(y) is found to be roughly Gaussian. The front widthis
defined as a standard deviationrify). We assume that the
front width w follows the scaling relation:

w=tPdnh(t,C,). (U]

The first termt?d, describes the time dependence of the front
width. However, the viscous pressure gradients in the fluids
stabilize the front and introduce a length scale in the system
at large timeg. This length scale is identified as the satura-
tion width w, of the front. At short time scale!s,<wi/ﬁOI , the
crossover functionh(t,C,) is independent of timet:
h(t,C,)=c(C,). At large time scalest»wi’ﬁd, the cross-
over functionh(t,C,) has the formt ~#aw,(C,), wherews is

only a function of the capillary numbez, .

When the front develops, it reaches a saturated front
width wg. Figure 4 showsvg as a function of the capillary
number. It is possible that the slowest experiment
(C,=4.40<10 ") has not reached saturation, due to the

e limited size of our model. As a consequence the saturation
width of the slowest experiment may be underestimated in
contrast to the other experiments. Assuming a power law
dependence of the saturated front width on the capillary
numberwg~C, * we found an exponent=0.6+0.2. In
three dimensions Wilkinson has proposed the scaling relation
[21] we~C, "(*17A*") However, we will emphasize that

FIG. 2. (a Displacement structure observed aE, this theory is valid in three dimensions. Using the exponents
=4.40%x 10 7. The dimension of the image is 350 350 mm.  from two-dimensional percolation in this relation gives
(b) The extracted fluid front of the structure (a). a=0.38.

The fractal structures of the fronts are characterized by
numberC,. The injection rates and the capillary number using the box counting algorithm and the density-density
used in the different experiments are given in Table I. Ex-correlation function. In the box counting procedure, the num-
amples of six different experiments at different injection ber of boxes with sizef needed to cover the front scales as
rates are shown in Fig. 3. At low injection rates, the structure
resembles the structures observed in invasion percolation. At N(8)=N W_Dbf(i) )
increased injection rate, the front stabilizes. As will be dis- 0 w/’
cussed below, the trapping and the movement in local capil-
lary fingers are essential to get a stable front when the viswhereDy, is the box counting dimension, ai), is the num-
cosity ratio is equal to 1. ber of boxes of sizé=1. Here the lengths are measured in

To calculate the front widtlw, we counted the number units of the average pore size=0.7 mm. The box counting
n(y) of pixels belonging to the front, at constant distayce dimension was found by fitting the scaling functiéfx) to

the functional formf(x)=x~Pb. This is obtained by search-
TABLE |. The values of the flow rate, velocity, and capillary ing the linear fit of logN(8)wPb/Ng)= —Dylog(s/w)+A,

number and front width for the 11 experiments. with D, and A as the free parameters. Figure 5 shows the
data collapse, for all experiments. The fractal dimension is

Superficial ws (Units of  estimated a®,=1.33+0.05. The data are fitted in the range

Flow rate(cm®h)  velocity (cm/h Ca pore size 1w<8/w<1. When §>w, the front is seen as a one-

dimensional object with a slope equal to 1.

133 67.9 3.3x10°¢ 2.69 . . .

e The second method to determine the fractal dimension of
13.6 6.91 3.3& 10 5.96 . . . .
8.56 4.37 214105 6.8 the fronts is to compute the densny-dens!ty corre]atlon func-
5'61 2'86 1'4& 10-5 6'49 tion, see, e.g., Gouyet al.[24]. The density-density corre-

) ) : 6 ) lation function is
2.81 1.44 7.0&10 8.56
1.91 0.972 4781078 13.4 e LDV -
C(r)= r ro+r —r- 3

116 0593 598 10¢ 105 (N =(p(ro)p(ro+r)f=r )

—6 - >
0.850 0.433 2.1210 24.0 Herer is a particular position on the front, ands a vector
0.536 0.273 1.3%10°° 22.0 . . S . .
0.416 0.912 1.0% 10-5 46.4 from this point.p(rg) is the grey level density of the pixel

0.176 0.0896 4.4810°7 60 located _airo. Th_e.dOleIe average reflects_an a\{eraglng over
all possible positions,, and over all possible directions of
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FIG. 3. The structure of six different experi-
ments near breakthrough. The dimension of the
image is 350 mmx 350 mm. The experiment at
C,=3.38x 10 ° shows a compact structure, nar-
row front, and small trapped clusters. The experi-
ment atC,=4.40x 10" 7 shows a very wide front
with trapped clusters on many length scales.

C, =1.04x107¢ C, = 4.40x1077

r. For a self-similar fractal, the density-density correlation[25,26]. The result is also consistent with the result obtained

function is expected to scale as for gravitational stabilized drainage fronis0].
By using Eqs(1) and(4), and assuming thatcw_ ", we
T find
C(r)=w g(w), (4)
—a I
wherew is the width of the front. The functiog(x) behaves Cr=w 9(%) - G(ctﬁd)’ ®

asg(x)~x"¢ for x<1 andg(x)~x"* for x>1. The expo-

nenta verifies the relationv=2—D,, whereDy is the frac- where G(x) is constant forx<l and G(x)~x*"! for

tal dimension. In Fig. 6, the scaling function is fitted with x>1. In Fig. 7, we plotC(r)r* as a function of /(ctPd) by
a=0.58+0.05 or D4=1.42+0.05. The fitting of the data choosing the value g8y, which gave the best data collapse.
was done for length scales larger than the pore size anld is difficult to get a very precise value of the dynamic
smaller than the width of the frontr{w<1). The fractal exponent3y, due to the limited size of our models. Assum-
dimension is consistent with that obtained from box countingng a power law behavior, the best estimate fgrobtained
(D,=1.33). We want to emphasize that these results aren the basis of experiments performed at different capillary
found by a data collapse of both slow and fast experimentsjumbers isB4=0.8+0.3.

and that the local structure of the fast experiments within the The fractal structure of the mass of the displacing fluid is
front width seems similar to the structure obtained at veryalso studied by using the box counting procedure. We show
slow injection rates. Moreover, both fractal dimensidhg in Fig. 8 the box counting data for three experiments in a
and D4 are close to the fractal dimension of the externallog-log plot. By fitting the data we found a fractal dimension
perimeter of invasion percolation cluster, whichDg=4/3  D{'=1.85+0.07. Again this result is consistent with the frac-
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FIG. 4. The front widthwg as a function of the capillary number
C,. ws is measured in units of average pore size. The solid line has FIG. 6. The density-density correlation function data of the front
a slope of 0.6. for experiments with  C,=3.32x10"4, 2.14x10 %,
4.76x10°%, 2.12x1075 1.04x10°% and 4.4x10 ’. The

fractal dimensiorD4 was found to beéd 4= 1.42+0.05.
tal dimension of invasion percolation clusters with trapping

[8] and experiments of very slow drainage in a two-
dimensional porous mediuf9]. with a growth zone restricted to the hy7], the fractal
The structure of the invading fluid is generated by thedimension of the cluster is found to bB=1.86—1.89
front, and therefore the length of the trapped clusters shoulfi15,27], while if the growth zone is restricted to the external
scale as the width of the froftrapped clusters are clusters of perimeter it isD =1.83[8,25,26,28. By using this result in
the displaced fluid trapped in the invading fluidhe size  Eq. (6) we find =1.92 with a growth zone restricted to the
distribution of the trapped clusters was measured for the difexternal perimeter, and=1.93—1.95 with a growth zone
ferent flow rates. In Fig. 9, the cumulative distribution of the restricted to the hull.
trapped clusters is plotted as function of the cluster size in a The exponentr estimated from the cumulative cluster
log-log plot for six experiments with different injection rates. size distribution is found slightly lower than the theoretical
This distribution is expected to scale likeN(s) estimate given by Meakif28]. We attribute this discrepancy
=5~ "IN f(S/Smay), Wheresm,, is the size of the largest to finite-size corrections that we expect to be large since his
trapped cluster antll; =N (s=1). The slope of the cumu- argument relies on the divergence of a tesf1 ” when
lative cluster distribution for the slowest displacement rates— . This divergence is very slow, as—2r is barely posi-
was found to be—0.70+0.10, which givesr=1.70+0.10.  tive, and as a result, the asymptotic scaling regime is only
Scaling arguments given by Meakj@8] predict a scaling reached for very large systems. Since our result is within
relation which in two dimensions is three standard deviations of the result of invasion percola-
tion, we cannot conclude that our result is inconsistent with

D
=1+ 5 y (6)
0.0
between the cluster distribution exponentind the fractal
dimensionD of the structure itself. For invasion percolation
3.0 -0.5 |
ke
kA 5
20 % slope = -1.33 =
o 4
- 10 ° iy
< ) A
& o] — L Lo
£ 00 0Cz=3.32x10"" =2 -10 l p‘v
z 5 C,=2.14x10 - |
£ 10! ©OCr4.76x10° Py=08 E
< * ca=2.12x1oj k :
20| ©C=1.04x10 o
+ C,=4.40x107 % 15 . ‘ K ‘
W80 T e o oo 1o 2o a0 -5.0 -4.0 -3.0 B—2.0 -1.0 0.0
log,, (d/w) |Og10 (r/t"9)

FIG. 5. Data collapse of the box counting data of the fronts for ~ FIG. 7. The dependence 6f(r)r¢ onr/t?¢ with 8,=0.8 giving
six experiments. The box dimension was found to bethe bestdata collapse. Arbitrary units have been used. The capillary
D,=1.33+0.05. number wasC,=4.40x10"".
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8.0 results from the trapping and flow in local capillary fingers.
T Trapping reduces the total pore volume accessible to the in-
vaded fluid. This implies a decrease in the effective perme-
ability K of the invaded regions. The capillary fingers of
the invaded fluid are more narrow than the fjords of the
displaced fluid, as can be seen in Fig. 3. This implies an even
further reduction in the permeability of the invaded regions.
The stabilizing effect may be seen through noting that it is
the mobility K¢/ 1 which enters the Darcy equation. de-
creasein effective permeability may just as well be inter-

6.0

+ C,=2.12x10"°

20 - 5 : ¢ preted as afncreasein effective dynamic viscosity — and
- 2 C;=1.04x10 ; thus we are effectively dealing with a more viscous liquid
—7
P C,=4.40x10 ° displacing a less viscous liquid, which leads to a stable front.
00 | , In order to develop more precisely the argument just pre-
0.0 1.0 2.0 3.0 sented, we argue as follows: The lower effective permeabil-
log,, &

ity in the injected liquid increases the absolute value of the

pressure gradient in this liqguid compared with the absolute
FIG. 8. The dependence of the number of boX¢s) needed to  value of the pressure gradient in the displaced liquid. As a

cover the front as a function af for three slow experiments. The rough estimate, considetp;/dx to be an average pressure
box counting dimension estimated from the slope of the curves igjradient in the injected fluid andpy/dx to be an average
Dy'=1.85+0.10. The slopes were fitted to the points between thepressure gradient in the displaced fluid. Here the positive
vertical marks indicating the pore size and the largest trapped clusdirection is chosen in the direction of the average flow. Fur-
ters. The experiments witfS,=1.04x10"® and C,=2.12<10"°  thermore, letl be the distance in the direction of the flow
were shifted, respectively+-1.0 and+2.0 along they axis for a  petween two point& andB. Here A and B are chosen as
better view. Hereg is measured in units of pixel size, and 1 pixel two points on the front and is downstream compared with
=021 mm. B. The pressure drop going froBh(at the injected fluid side
to A (at the displaced fluid sidehrough the injected fluid
what is expected from invasion percolation with trapping. e_quals the pressure qup going frainto A t_hrough the
displaced fluid. This gives the balance equation

IV. DISCUSSION

We have performed drainage experiments in a two- dp, dp
dimensional porous medium. The main focus of the work is = —Apa=| —d—ApB (7)
the study of the structure and dynamics of the front for dif- dx dx
ferent flow rates when both fluids have the same viscosity.

From the experiments we clearly see a stabilizing effect o, the pressure. Let us now compare the difference in the
the front at high injection rates. The stabilizing effect is d“ecapillary pressure given by Eq7) with the width of the

to a lower effective permeabilitKeq in the injected fluid — 4nijary pressure threshold distribution. The pressure thresh-
than in the displaced fluid. The lower effective permeability o1y gistribution is only a function of the interfacial tension,

the wetting properties, and the distribution of the pore sizes

0.0 in the system, i.e., a purely local quantity. Assume that the
width of the pressure threshold distribution is equal to
cyla, wherec is a dimensionless constant. The widti |

—10 | of the front must then be apparent whewa is equal to the

_ ' capillary pressure differencpg—Ap,. This is when

= '

a 20 ——— Ca=3.22x10': \\ :

= — '

A — C.=2.14x10° ) '} dpg _dpi| v

2 — Ca=4.76x10:z | b ApB_ApA=W<W_W =c3 )

30+ ——— C,=2.12x10 ~ '\
——— C,=1.04x10° |} _ _ N .
- Ca=4.40x10'7 l\ : Thus, since the termipd/dx_—dpi/dx is positive, anq in-
40 . , ‘ N ‘ . creases with a lower effective permeability of the injected
™20 -10 00 10 20 30 40 50 fluid, this stabilizes the front.
10g,, The front was found to be fractal with a fractal dimension

D,=1.33, consistent with the fractal dimension of the exter-

FIG. 9. The normalized cumulative cluster size distribution for Nl perimeter of invasion percolation. By measuring the frac-
six experiments. The slope of the line s0.70, giving a value of  tal dimension of the structure left behind the front we found
7=1.70+0.10. Here,s is measured in units of pixel area, i.e., 1 a fractal dimensio®}]'=1.85 also consistent with the results

pixel area equals 0.21 md 0.21 mm. of invasion percolation with trapping. We emphasize that
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